US009058124B2

a2 United States Patent

Hornkvist et al.

US 9,058,124 B2
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

DIRECTORY TREE SEARCH

Inventors: John M. Hornkvist, Cupertino, CA
(US); Eric R. Koebler, Aptos, CA (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 29 days.

Appl. No.: 13/350,634

Filed: Jan. 13, 2012

Prior Publication Data
US 2012/0179689 A1l Jul. 12,2012

Related U.S. Application Data

Provisional application No. 61/433,177, filed on Jan.
14, 2011.

Int. Cl1.

GO6F 17/30 (2006.01)

GO6F 3/06 (2006.01)

GO6F 1130 (2006.01)

HO4L 12/24 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC GO6F 3/0665 (2013.01); GO6F 3/0605

(2013.01); GO6F 3/067 (2013.01); GO6F
11/3034 (2013.01); GO6F 11/3055 (2013.01);
HO4L 41/046 (2013.01); HO4L 41/0806
(2013.01); HO4L 41/0886 (2013.01); HO4L
67/1097 (2013.01)
Field of Classification Search
CPC .o GO6F 17/30091; GOGF 17/30067,
GOG6F 17/30011; GOG6F 17/30094; GO6F
17/30616; GOGF 17/30979; Y10S 707/99931,
Y108 707/99933; Y10S 707/917; Y10S
707/956; Y10S 707/971

Directory
Tree Search

t5)
a

Determine asel of
DOCID for each

]

Child
diractonss?
208
N

Determine & set of

DOCIDs for oach tem

TERMID in the query
209

Parse query Into directory
path(s) and indexed term

directory OID I the query

USPC 707/741, 736, 776, 811, 999.001, 705,
707/706, 722, 769, 797

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,098,066 A * 82000 Snowetal.cccceovrvrrinnens 1/1

7,085,766 B2* 82006 Keith, Jr. .ccoovvvivniiiiiiinins 1/1

7,634,468 B2 12/2009 Stephan

7,698,328 B2 4/2010 Sachs et al.

7,765,213 B2 7/2010 Loofbourrow et al.

7,774,326 B2* 8/2010 Arrouyeetal. 707/705

7,783,589 B2 8/2010 Hornkvist et al.

7,917,516 B2 3/2011 Loofbourrow et al.

8,612,412 B2* 12/2013 Clarketal.coce... 707/706
2005/0187946 Al* 82005 Zhangetal. 707/100
2006/0117049 Al* 6/2006 Jainetal. 707/101
2006/0129584 Al* 6/2006 Hoangetal. 707/101
2007/0118561 Al* 5/2007 Idiculaetal. 707/104.1
2007/0162580 Al* 7/2007 Clemmetal.c...... 709/223
2007/0192293 Al 8/2007 Swen
2010/0161623 Al* 6/2010 Torbjornsen 707/754
2010/0211572 Al 8/2010 Beyer et al.

2010/0241662 Al* 9/2010 Keith, Jr. .occooovvvivienene 707/770
2011/0137963 Al* 6/2011 Hoangetal. 707/822
2011/0213783 Al* 9/2011 Keith, Jr. «oooveovviiiinens 707/741

* cited by examiner

Primary Examiner — Dennis Truong

(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Directory tree searching uses a path index to determine a set
of documents for a directory path portion of a search query.
The set of documents for the directory path portion is evalu-
ated with a set of document for an indexed term portion of the
search query to determine common documents.

23 Claims, 8 Drawing Sheets

Retrisve chik! directory
oip
&

Evaluate the sets for
common DOCIDs
a

Retum OID for each
‘common DOGID
213

U.S. Patent Jun. 16, 2015 Sheet 1 of 8 US 9,058,124 B2
100
Operating system
Reverse
Daia files x| lookup
105 s
Indexing
101
ol \\& Postings
Metadata lists
107 109
Tt T T H
! I
: Inverse Path :
: indices indgices |
| 111 i13 :
!]
: Index files :
! 103 !
= .
Search .
Searching)
query 117 = resuits
19 121

Figure 1

U.S. Patent Jun. 16, 2015 Sheet 2 of 8

US 9,058,124 B2

"~ Directory
(Tree Search)
200

4

Parse query into directory
path(s) and indexad term
(s)

201

!

Determine a s&t of
DOCIDs for each >

directory OID in the query
203

/$~i

L directories /‘>—= Y oID

N \\ 1/"' gQZ
N
v

Determine a set of
DOCIDs for eact term
TERMID in the query

209

l

Evaluate the sets for
sommon DOCiDs
21

:

Return OID for sach
common DOCID

213

End

Retrieve child directory

1
Q

c

-

G

PO

U.S. Patent Jun. 16, 2015 Sheet 3 of 8 US 9,058,124 B2

300

Figure 3

U.S. Patent

Jun. 16, 2015 Sheet 4 of 8 US 9,058,124 B2
4001
Na TERMID DGCID
401 403
12 104, 105. 106
29 104, 106
Figure 4
5007
\ Directory Child
) OID DOCID Oilbs
501 503 205
10 104, 105 22
20 106 -
22 - -
Figure 5
600
.
EN
Directory
oD New path Old path
601 603 605
22 | lusrs/foo/oix | susrs/john/pix
Figure 6A
610
\\
Directory
OoiD New path Old path
601 61 613
22 | 222052 | 22710/5/2

Figure 6B

U.S. Patent

Jun. 16, 2015 Sheet 5 of 8

] Path Updaie \‘\
00

.

Find object OID in thie
reverse lookup and path
data structures
701

!

Construct old path from
reverss path data
structure
703

|

h 4

Receive new path from
operating system
705

.
o

V %\\,

~New parent GID =>
o~ o~

old parent OiD?

Y \\ 0z -
\/

N

k4

Update data
structures
709

X

- T~
Is abject a parent? .

m -
~

> —

e
———)

US 9,058,124 B2

U.S. Patent

Jun. 16, 2015 Sheet 6 of 8

4 Update Daia
Q Structures
709

!

h, K
o, o

Find old parent DID in
reverse leokup and path
index data structures

121

$

Insert update (remove)
posting in postings list ior
old parent GID
723

l

3,

Find new parent OI1D in
path index data structure
725

l

Insert update (add} posting
in postings list ior new
parent OID
727

l

Update reverse iookup
data structure with new
parent OIC
729

l

k4

Create update operation
for path index data
structure

Return
(;

Figure 71

US 9,058,124 B2

U.S. Patent Jun. 16, 2015

800

900

Sheet 7 of 8
Parent

oID OID
801 803

5 2

10 5

20 5

22 10

OID

22

10

Figure 9

US 9,058,124 B2

U.S. Patent Jun. 16, 2015 Sheet 8 of 8 US 9,058,124 B2
1000
AN
N4
Storage
Processor(s) NVRAM RAM derg:)eg{s)
1003 1007 1005 1009
< Bus(es) 1401
N /
Display /O
controllers and conirollers
devices 1017
1015
I/O devices
1019

Figure 10

US 9,058,124 B2

1
DIRECTORY TREE SEARCH

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation 61/433,177, filed Jan. 14, 2011, which is hereby incor-
porated by reference.

FIELD OF THE INVENTION

This invention relates generally to searching of data pro-
cessing files, and more particularly to searching within file
system directory trees.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The following notice applies: Copyright © 2010, Apple
Inc., All Rights Reserved.

BACKGROUND

Modern data processing systems, such as general purpose
computer systems, allow the users of such systems to create a
variety of different types of data files. For example, a typical
user of a data processing system can create text files with a
word processing program or can create an image file with an
image processing program. Numerous other types of files are
capable of being created or modified, edited, and otherwise
used by one or more users for a typical data processing sys-
tem. The large number of the different types of files that can
be created or modified can present a challenge to a typical
user who is seeking to find a particular file which has been
created.

Modern data processing systems often include a file man-
agement system which allows a user to place files in various
directories or subdirectories (e.g. folders) and allows a user to
give the file a name. Further, these file management systems
often allow a user to find a file by searching not only the
content of a file, but also by searching for the file’s name, or
the date of creation, or the date of modification, or the type of
file. Typically, file management systems include a searching
function which allows a user to search for flies by various
criteria, such as a term in a file, and also allow the user to limit
the search to a particular directory.

Searching through hundreds, if not thousands, of files fora
particular term is resource intensive, so most file management
systems index at least some of the terms in files for faster
searching. However, determining whether a file containing a
particular term is in a specified directory requires calls to the
underlying operating system, which slows the search.

SUMMARY

Directory tree searching uses a path index to determine a
set of documents for a directory path portion of a search
query. The set of documents for the directory path portion is
evaluated with a set of document for an indexed term portion
of the search query to determine common documents.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a diagram illustrating a overview of the operation
of' an embodiment a directory tree search;

10

15

25

40

45

55

65

2

FIG. 2 is an embodiment of a flew diagram of a directory
tree search method to be performed by a computer executing
indexing software;

FIG. 3 is a exemplary directory tree structure in a hierar-
chical file system in an implementation of FIG. 1;

FIG. 4 is a diagram of an inverted index data structure for
use in an implementation of the method of FIG. 2 when
searching the directory tree structure of FIG. 3;

FIG. 5 is a diagram of a path index data structure for use in
an implementation of the method of FIG. 2 when searching
the directory tree structure of FIG. 3;

FIGS. 6A-B are diagrams of embodiments of an overlay
data structure for use in an implementation of the method of
FIG. 2 when searching the directory tree structure of FIG. 3;

FIGS. 7A-B are flow diagrams of an embodiment of a path
update method to be performed by a computer executing
indexing software;

FIG. 8 is a diagram of a reverse lookup data structure for
use in an implementation of the method of FIG. 7 when
indexing data in the directory tree structure of FIG. 3;

FIG. 9 is a diagram of a reverse path data structure for use
in an implementation of the method of FIG. 2 when indexing
data in the directory tree structure of FIG. 3; and

FIG. 10 is a diagram of a computer environment suitable
for practicing directory free searching as disclosed herein.

DETAILED DESCRIPTION

Inthe following detailed description of embodiments of the
invention, reference is made to the accompanying drawings in
which like references indicate similar elements, and in which
is shown by way of illustration specific embodiments in
which the invention can be practiced. These embodiments are
described in sufficient detail to enable those skilled in the art
to practice the invention, and it is to be understood that other
embodiments can be utilized and that logical, mechanical,
electrical, functional and other changes can be made without
departing from the scope of the present invention. The fol-
lowing detailed description is, therefore, not to be taken in a
limiting sense, and the scope of the present invention is
defined only by the appended claims.

Beginning with an overview of the operation of directory
tree searching, FIG. 1 illustrates one embodiment of a system
architecture 100 that includes an indexing system 101
coupled to an operating system (OS) 123. The indexing sys-
tem 101 is creates and maintains index files 103 that are used
by searching system 117 to retrieve files containing terms
specified by a search query 119, such as a certain word in a
document, and to return the results of the search 121 as a list
of files. The indexing system 101 receives information
obtained by scanning data files 105 and metadata 107 and
uses that information to generate entries in one or more
inverted indices 111. Each entry in the inverted index associ-
ates a particular term with the data files 105 and metadata 107
that contain the particular term. An embodiment of an
inverted index data structure is shown in FIG. 4. It will be
appreciated that content files, such image files or music files,
can be indexed based on the contents of metadata 107 asso-
ciated with the content files. Thus, the inverted indices 111
represent at least a subset of the data in a storage device and
can include all of the files in a particular storage device (or
several storage devices), such as the main hard drive of a
computer system. In one embodiment, each inverted index is
made read-only after it reaches a pre-determined size and
indexing system 101 accumulates new index information in
postings lists 109 until the new index information is stored in
a new inverted index.

US 9,058,124 B2

3

The operating system 123 organizes files in a hierarchical
file system of parent-child directory relationships, an
example of which is shown in FIG. 3. The indexing system
101 creates and maintains one or more path indices 113 that
map each directory containing one or more indexed docu-
ments to those documents. The indexing system 101 uses the
path indices 113 in conjunction with the inverted indices 111
to satisfy a search query 119 without having to request infor-
mation from the operating system 123, is described below
with reference to FIG. 2. An embodiment of a path index data
structure is shown in FIG. 5. The indexing system 101 also
creates and maintains a reverse lookup data structure 115 that
identifies the parent directory for each child directory indexed
in the file system. One embodiment of the reverse lookup data
structure is shown in FIG. 8 and its use is described in con-
junction with FIG. 7.

One embodiment of a directory tree search method 200 that
uses the path indices 113 and the inverted indices 111 is
described in terms of computer software with reference to a
flow chart in FIG. 2 and exemplary inverted index, path index
and overlay data structures in FIGS. 3-6. Turning first to FIG.
3, a simplified directory structure 300 in a hierarchical file
system is illustrated. Two user directories, “john” 305 and
“f00” 307, are child directories to “usrs” directory 303 that, in
turn, is a child directory of “root” 301. Directory john 305
logically contains two files, document “x.txt” 309 and docu-
ment “y.txt” 311. Directory john 305 is also the parent of child
directory “pix” 315. Directory foo 307 logically contains a
single file, document “z.txt” 313. Each file system object is
assigned a unique object identifier (OID) by the operating
system 123 and the indexing system 101 assigns a unique
document identifier (DOCID) to each object that is indexed.
The OID for each object in FIG. 2 is shown in the lower left
corner and the DOCID is shown in the lower right hand
corner. In addition, the indexing system 101 assigns a unique
term identifier (TERMID) to each term that is indexed.

Assume for the purposes of illustration that x.txt, y.txt and
z.txt all contain the term “Apple” and the search query is
“Find all documents in john’s directory that contain the term
“Apple.” Assume also that the TERMID for APPLE is 12.

Referring now to FIG. 2, the directory tree search method
200 is invoked by the searching system 117 when a search
query 119 specifying a directory is received. At processing
block 201, the directory tree search method 200 parses the
query into a directory path portion and an indexed term por-
tion, i.e., find all documents in directory john 303, and find all
documents that contain “Apple.” At processing block 203, the
method 200 determines a set of DOCIDs for each directory in
the query using exemplary path index data structure 500
illustrated in FIG. 5. Each entry in path index 500 comprises
adirectory OID field 501, a DOCID field 503 and a child OID
field 505. Because the OID of directory john 305 is 10, pro-
cessing block 203 retrieves the DOCIDs 104, 105 from the
OID 10 entry in the path index 500, which are the DOCIDs for
x.txt and y.txt. If the query requests searching child directo-
ries, at decision block 205, the method 200 determines if the
child OID field 505 for entry OID 10 in the path index 500
contains a value. In the current example, the method 200
retrieves 22, which is the OID for child directory pix 315
(processing block 207), and returns to processing block 203
to retrieve the DOCIDs from the OID 22 entry in the path
index 300. As shown in FIG. 5, there is an entry for OID 22 in
the path index but the DOCID field 503 is empty (null). In an
alternate embodiment, there would be no entry in the path
index 500 for OID 22 as it has no documents that are indexed.
In still another embodiment, the child OID field 505 for the
OID 10 entry in the path index 500 would be empty.

10

15

20

25

30

35

40

45

50

55

60

65

4

If there are no more sub-directories under directory john
205, at processing block 209 the method 200 determines a set
of DOCIDs for documents in the file system that contain the
term “Apple” using an exemplary inverse index 400 illus-
trated in FIG. 4. Each entry in the inverse index 400 contains
a TERMID field 401 and a DOCID field 403. Because the
TERMID for Apple is 12, the DOCIDs retrieved from the
entry for TERMID 12 are 104, 105 and 106, which are the
DOCIDs for x.txt, y.txt, and z.txt. At processing block 211,
the method 200 evaluates the two sets for common DOCIDs
to find documents that satisfy the full query. In the current
example, the method performs an intersection (AND opera-
tion) on the two sets to determine that DOCIDs 104, 105 (for
documents x.txt and y.txt) satisty the query. One of skill in the
art will immediately recognize that other set operations are
used when evaluating other types of queries. At processing
block 213, the directory tree search method 200 passes the
DOCIDs to the searching system 117 for processing into a list
of file names to be output as search results 121.

In one embodiment, the path index 500 is generated upon
initialization of the indexing system 101 and is made read-
only. Updates to paths caused by moves and additions within
the file system are stored in an overlay data structure, one
embodiment of which is shown in FIG. 6A. Returning now to
FIG. 3, assume directory pix 315 has moved from directory
john 305 to directory foo 307. The corresponding overlay 600
contains an entry for the directory pix 315. The entry consists
of an OID field 601, i.e., 22, a new path field 603, i.e.,
/usrs/foo/pix, and an old path field 605, i.e., /usrs/john/pix.
When the overlay data structure is present, processing block
203 checks the directory OID 22 against the overlay. Because
the overlay 600 indicates that directory john 305 no longer
owns directory pix 315, it is not necessary for the method 200
to check the directory OID field 501 in the path index 500 for
an entry for directory pix since any documents stored in the
directory pix are no longer children of directory john. It will
be appreciated that the overlay 600 is also be used to change
the scope of a search when the query is directed to a directory
of'which both the old and new paths are children. An alternate
embodiment of an overlay data structure 610 is illustrated in
FIG. 6B, in which the names in the paths have been replaced
by their corresponding OIDs, i.e., new path field 611 is 22/20/
5/2 (starting at root 301), which corresponds to /usrs/foo/pix,
and old path field 613 is 22/10/5/2, which corresponds to
/usrs/john/pix. All subsequent references to overlay 600
encompass overlay 611 as well.

In one embodiment, the overlay 600 is created when a
merge or compaction operation is invoked by the indexing
system 101. If an index will be both merged and compacted,
a single overlay can be used for both operations. The path
index 500 is updated with the changes in the overlay 600
when the merge/compaction operation is finished. In one
embodiment, the overlay 600 is stored with the path indices
113.

In one embodiment, the overlay 600 is assigned a pointer
and access to the overlay by a process (thread) is controlled by
read/write locks. Query and reintegration threads take the
read lock, while other threads, such as move operations, take
the write lock. Reintegration of the overlay 600 into the path
index 500 occurs after a merge or compaction operation
(whether successful or not) and after crash recovery if the
index files 103 were synced to disk (in which case the overlay,
or enough information to recreate it, is also synced to disk). A
work-queue for move operations is suspended during reinte-
gration. A reintegration thread applies the changes in the
overlay entries to the appropriate path index 500 and clear the
pointer. The move work-queue is resumed and the reintegra-

US 9,058,124 B2

5

tion thread posts a work item to the work-queue for each
thread that currently has access to the overlay. Once all the
work items have been completed, the threads no longer need
access to the overlay and the reintegration thread reallocates
the overlay. Because the threads during normal processing
have to address the overlay using the pointer, clearing the
pointer ensures that the overlay cannot be accessed after
deallocation.

Use of the overlay allows long running operations a con-
sistent, but not necessarily up-to-date, view of the file system
when required without blocking writes to the file system by
other threads. Such an operation will access only the path
index 500, and reintegration of the overlay and the path index
500 is deferred until the operation completes (or is cancelled).

Turning now to FIG. 7A, a flow chart for one embodiment
of a path update method 700 is described with reference to
exemplary reverse lookup and reverse path data structures in
FIGS. 8 and 9. The reverse lookup data structure 800 contains
an entry for each file system object that is indexed. The entry
consists of an OID field 801 and a corresponding parent OID
field 803. Although illustrated as containing only entries for
directories it will be appreciated that the reverse lookup data
structure 800 can also contain entries for files. In addition,
directories that do not have any indexed child file system
objects are treated as if they were files in this respect. Because
reverse lookup for files is less frequent than for directories,
and other information about the file is often also needed, in
one embodiment, the file entries are stored with the other
information instead of in the reverse lookup data structure
itself. Entries in the reverse path data structure 900 are
arranged from the bottom of a path to the top of the path.

The path update method 700 is invoked by the indexing
system 101 when it receives notification from the operating
system 123 that a file or directory has moved. At processing
block 701, the method 700 finds the entry for the file system
object OID, i.e., OID 22 (directory pix) in the reverse lookup
data structure 800 and the reverse path data structure 900.
Continuing with the example of directory pix 315 moving
from directory john 305 to directory foo 307, the old path is
stored in the reverse path data structure 900, with the OID for
directory pix (22) being the top entry and the OID for root (2)
being the bottom entry. The method 700 constructs the old
path for directory pix from the reverse path 900, i.e., /usrs/
john/pix (processing block 703) and receives the new path for
directory pix from the operating system, i.e., /usrs/foo/pix
(processing block 705). If the new parent OID is not the same
as the old parent OID 803 (decision block 707), at processing
block 709, the data structures are updated as shown in FIG.
7B and described below. At processing block 711, the method
700 uses the path index data structure 500 to determine if the
file system object OID is a parent of any file system objects.
If so, the paths for the corresponding children OIDs are
checked for changes starting at processing block 701. If the
old and new parent OIDs are the same at decision block 707,
the data structures for this file system object do not need to be
updated and the method 700 proceeds directly to decision
block 711.

FIG. 7B illustrates the operations performed at processing
block 709. At processing block 721, the method 700 finds the
old parent OID entry, i.e., OID 10 (directory john), in the
reverse lookup data structure 800 and path index data struc-
ture 500 to determine the postings list for the old parent object
and places a update (remove) posting in that postings list
(processing block 723). At processing block 725, the method
700 uses the new path information provided by the operating
system 123 to find the OID for the new parent object, i.e., OID
20 (directory foo), in the path index data structure 500. An

10

15

20

25

30

35

40

45

50

55

60

65

6

update (add) posting is placed in the postings list associated
with the new parent OID (processing block 727). At process-
ing block 729, the parent OID field 803 entry for the moved
file system object, i.e., OID 22 (directory pix), in the reverse
lookup data structure 800 is changed to the new parent OID,
i.e., from OID 10 (directory john), to OID 20 (directory foo).
A corresponding update operation is created for the path
index data structure 500 (which may be recorded in an overlay
if one is being used) at processing block 731.

In one embodiment, the data structures illustrated in FIGS.
4-5 and 8-9 are tables having one field designated as a key,
such as directory OID field 501 for path index 500, and entries
in the tables are found by hashing the key value. Hashing
techniques are well-known in the art and therefore are not
described in further detail. Alternate embodiment in which
the tables are implemented as b-trees, tries/radix tees or other
well-known data structures that support key/value lookup,
including a linked list or array using linear traversal, will be
readily contemplated by one of skill in the art.

FIG. 10 illustrates an example of a typical computer system
in which directory tree searching as described herein can be
implemented. Note that while FIG. 10 illustrates various
components of a computer system, it is not intended to rep-
resent any particular architecture or manner of interconnect-
ing the components as such details are not germane to the
present invention. It will also be appreciated that network
computers and other data processing systems which have
fewer components or perhaps more components can also be
used with the present invention. The computer system of F1G.
10 can, for example, be a Macintosh computer from Apple
Inc.

As shown in FIG. 10, the computer system 1000, which is
aform of a data processing system, includes a bus 1001 which
is coupled to processor(s) 1003 and NVRAM (non-volatile
random access memory) 1007, RAM 1005, and storage
devices) 1009. The bus 1001 interconnects these various
components together and also interconnects these compo-
nents 1003, 1007, 1005, 1009 to a display controller and
display device 1015, and to peripheral devices such as input/
output (I/O) devices 1019, which can be mice, keyboards,
modems, network interfaces, printers and other devices
which are well known in the art. Typically, the input/output
devices 1019 are coupled to the system through input/output
controllers 1017. The RAM 1005 is typically implemented as
dynamic RAM (DRAM), which requires power continually
in order to refresh or maintain the data in the memory.

The storage device 1009 is typically a hard drive or an
optical drive or other storage devices that maintain data (e.g.
large amounts of data) even after power is removed from the
system. While FIG. 10 shows that the storage device 1009 is
local device coupled directly to the rest of the components in
the data processing system 1000, it will be appreciated that
the write and destroy operations can be performed on a stor-
age device coupled remotely to the system 1000, such as a
network storage device that is coupled to the data processing
system through a network interface such as a wireless or
Ethernet interface. The bus 1001 can include one or more
buses connected to each other through various bridges, con-
trollers and/or adapters as is well known in the art. In one
embodiment, the I/O controller 1017 includes a USE (Uni-
versal Serial Bus) adapter for controlling USB peripherals
and an IEEE 1394 controller for IEEE 1394 compliant
peripherals.

The description of FIG. 10, is intended to provide an over-
view of computer hardware and other operating components
suitable for implementing the write and destroy operations,
butis not intended to limit the applicable environments. It will

US 9,058,124 B2

7

be appreciated that the computer system 400 is one example
of many possible computer systems which have different
architectures. A typical computer system will usually include
at least a processor, memory, and a bus coupling the memory
to the processor. One of skill in the art will immediately
appreciate that the invention can be practiced with other com-
puter system configurations, including multiprocessor sys-
tems, minicomputers, mainframe computers, and the like.
The invention can also be practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work.

Directory tree searching has been described. Although spe-
cific embodiments have been illustrated and described herein,
it will be appreciated by those of ordinary skill in the art that
any arrangement which is calculated to achieve the same
purpose can be substituted for the specific embodiments
shown. This application is intended to cover any adaptations
or variations of the present invention.

For example, the methods 200 and 700 constitute computer
programs made up of machine-executable instructions illus-
trated as processing blocks in FIGS. 2 and 7. Describing the
methods by reference to a flow diagram enables one skilled in
the art to develop such programs including such instructions
to carry out the methods on suitably configured machines (the
processor of the machine executing the instructions from
machine-readable media, including memory) The machine-
executable instructions can be written in a computer program-
ming language or can be embodied in firmware logic. If
written in a programming language conforming to a recog-
nized standard, such instructions can be executed on a variety
of hardware platforms and for interface to a variety of oper-
ating systems. In addition, the present invention is not
described with reference to any particular programming lan-
guage. It will be appreciated that a variety of programming
languages can be used to implement the teachings of the
invention as described herein. Furthermore, it is common in
the art to speak of software, in one form or another (e.g.,
program, procedure, process, application, module, as taking
an action or causing a result. Such expressions are merely a
shorthand way of saying that execution of the software by a
computer causes the processor of the computer to perform an
action or produce a result. It will be appreciated that more or
fewer processes can be incorporated into the methods illus-
trated in FIGS. 2 and 7 without departing from the scope of
the invention and that no particular order is implied by the
arrangement of blocks shown and described herein.

The terminology used in this application with respect to file
systems is meant to include all operating system environ-
ments that organize data into hierarchical directory structure.
Therefore, it is manifestly intended that this invention be
limited only by the following claims and equivalents thereof.

What is claimed is:

1. A method comprising:

parsing a search query into a directory path portion and an

indexed term portion, the directory path portion com-
prising a directory specified by a user in the search query
and the indexed term portion comprising a term speci-
fied by the user in the search query;

determining a first set of document identifiers for each

directory in the directory path portion using a path index,
the path index comprising path entries, each path entry
including a directory identifier, a document identifier,
and a child identifier used to recursively search child
directories when specified by the search query;
determining a second set of document identifiers for each
term in the indexed term portion using an inverted index,

20

25

35

40

45

50

55

65

8

the inverted index comprising term entries, each term
entry including a term identifier and a document identi-
fier; and

evaluating the sets for common document identifiers, the

common document identifiers forming a third set of
document identifiers corresponding to documents that
are a result of the search query.

2. The method of claim 1, wherein evaluating comprises
performing a set operation on the sets.

3. The method of claim 2, wherein the set operation is an
intersection.

4. The method of claim 1 further comprising:

determining a set of document identifiers for a child direc-

tory in the directory path portion using the path index.

5. The method of claim 1, wherein determining a set of
document identifiers for each directory in the path portion
comprises:

retrieving the document identifiers from an entry in the

path index, each entry being associated with one direc-
tory.

6. The method of claim 1, wherein determining a set of
document identifiers for each directory in the path portion
comprises:

searching an overlay data structure for changes to directory

paths, the overlay data structure comprising a directory
identifier, a new directory path and an old directory path
corresponding to a directory with a changed directory
path; and

excluding a document identifier from the set if a corre-

sponding entry in the overlay data structure contains a
new directory path that does not match the directory path
portion of the search query.

7. The method of claim 6 further comprising:

reintegrating the overlay data structure into the path index

by applying the changes in the overlay data structure.

8. The method of claim 6 further comprising:

controlling access to the overlay data structure using read

and write locks.

9. The method of claim 1 further comprising:

updating the path index using a reverse lookup data struc-

ture and a reverse path data structure, each entry in the
reverse lookup data structure comprising a child object
identifier and a parent object identifier, and each entry in
the reverse path data structure comprising object identi-
fiers for each file system object in a directory path.

10. The method of claim 9 further comprising:

updating the reverse lookup data structure using the reverse

path data structure when a directory path changes.
11. A non-transitory machine-readable storage medium
having stored thereon executable instructions to cause a pro-
cessor to perform operations comprising:
generating two sets of document identifiers using a path
index and an inverted index, a first set containing docu-
ment identifiers for each directory specified by a user in
a search query and a second set for each term specified
by the user in the search query, wherein the path index
comprises path entries, each path entry including a
directory identifier, a document identifier, and a child
identifier used to recursively search child directories
when specified by the search query, and the inverted
index comprises term entries, each term entry including
a term identifier and a document identifier; and

determining common document identifiers in the two sets,
the common document identifiers forming a third set of
documents corresponding to documents that are a result
of the search query.

US 9,058,124 B2

9

12. The non-transitory machine-readable storage medium
of claim 11, wherein creating the first set of document iden-
tifiers comprises:

finding the document identifiers in the path index, each

entry in the path index being associated with one direc-
tory.

13. The non-transitory machine-readable storage medium
of claim 11, wherein creating the first set of document iden-
tifiers comprises:

filtering document identifiers using an overlay containing

changes to directory paths, the overlay comprising a
directory identifier, a new directory path and an old
directory path corresponding to a directory with a
changed directory path.

14. The non-transitory machine-readable storage medium
of claim 13, wherein the operations further comprise:

applying the changes in the overlay to the path index.

15. The non-transitory machine-readable storage medium
of claim 11, wherein the operations further comprise:

creating an update operation for the path index when a

parent object for a child object in a reverse lookup table
changes.

16. A system comprising:

aprocessor coupled to a memory through a bus, and further

coupled to an input/output interface; and

an indexing process executed from the memory by the

processor to cause the processor to

receive a search query through the input/output inter-
face, the search query comprising a directory speci-
fied by a user and a term specified by the user;

search a path index for document identifiers that corre-
spond to the directory specified in the search query to
generate a first set of document identifiers, the path
index comprising path entries, each path entry includ-
ing a directory identifier, a document identifier, and a
child identifier used to recursively search child direc-
tories when specified by a search query;

search an inverted index for document identifiers that
correspond to the term specified in the search query to
generate a second set of document identifiers, the
inverted index comprising term entries, each term
entry including a term identifier and a document iden-
tifier; and

generate a third set of document identifiers comprising
document identifiers common to the first set for the
path index and the second set for the inverted index,
the third set of document identifiers corresponding to
documents that are a result of the search query.

17. The system of claim 16, wherein the indexing process
further causes the processor to determine a document identi-
fier has a parent directory that is not specified in the search
query as a result of a path change using an overlay that records
path changes, the overlay comprising a directory identifier, a
new directory path and an old directory path corresponding to
a directory with a changed directory path.

10

15

20

25

30

35

40

45

50

10

18. The system of claim 17, wherein the indexing process
further causes the processor to update the path index with the
changes in the overlay.

19. The system of claim 16, wherein the indexing process
further causes the processor to execute an update operation on
the path index when a parent object for a child object in a
reverse lookup table changes.

20. An apparatus comprising:

means for indexing document identifiers for directories

according to paths in a file system, the means for index-
ing document identifiers for directories comprising path
entries, each path entry including a directory identifier, a
document identifier, and a child identifier used to recur-
sively search child directories when specified by a
search query;

means for indexing document identifiers for terms in docu-

ments stored in directories in the file system, the means
for indexing document identifiers for terms comprising
term entries, each term entry including a term identifier
and a document identifier;

means for receiving a search query, the search query com-

prising a directory specified by a user and a term speci-
fied by the user; and

means for generating a result of the search query, wherein

the means for generating determines a third set of com-
mon document identifiers in a first set and a second set of
document identifiers, the first set comprising document
identifiers in the means for indexing the document iden-
tifiers for directories and the second set comprising
document identifiers in the means for indexing the docu-
ment identifiers for terms corresponding to the directo-
ries and terms in the search query, the third set of com-
mon document identifiers corresponding to documents
that are a result of the search query.

21. The apparatus of claim 20 further comprising:

means for recording changes to paths in the file system, the

means for recording changes comprising a directory
identifier, a new directory path and an old directory path
corresponding to a directory with a changed directory
path, wherein the means for generating excludes a docu-
ment identifier from the resultif a corresponding path in
the means for recording is not specified in the search
query.

22. The apparatus of claim 21 further comprising:

means for reintegrating the changes in the means for

recording into the means for indexing document identi-
fiers for directories.

23. The apparatus of claim 20 further comprising:

means for reverse lookup that stores object identifiers and

corresponding parent object identifiers for file system
paths; and

means for updating the indexing document identifiers for

directories when the means for reverse lookup changes.

#* #* #* #* #*

